Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra. | −h6−1/2h5+3/2h4+1/2h3+h1 | g6+1/3g5+1/6g3+2/3g2 | g10−2g9+4g8+6g1 | g15 | g16+2/3g14+2/3g13+g7 | −g21+2/3g19 | −g23+3/2g18 | g25 | g28−3/2g24+g22 | g26 | −g31+6g27 | −g30+1/6g29 | g33+g32 | g34 | g35 | g36 |
weight | 0 | ω1 | ω1 | 2ω1 | 2ω1 | 3ω1 | 3ω1 | 4ω1 | 4ω1 | 4ω1 | 5ω1 | 5ω1 | 6ω1 | 7ω1 | 7ω1 | 8ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω1−6ψ | ω1+6ψ | 2ω1 | 2ω1 | 3ω1−6ψ | 3ω1+6ψ | 4ω1−12ψ | 4ω1 | 4ω1+12ψ | 5ω1−6ψ | 5ω1+6ψ | 6ω1 | 7ω1−6ψ | 7ω1+6ψ | 8ω1 |
Isotypical components + highest weight | V0 → (0, 0) | Vω1−6ψ → (1, -6) | Vω1+6ψ → (1, 6) | V2ω1 → (2, 0) | V3ω1−6ψ → (3, -6) | V3ω1+6ψ → (3, 6) | V4ω1−12ψ → (4, -12) | V4ω1 → (4, 0) | V4ω1+12ψ → (4, 12) | V5ω1−6ψ → (5, -6) | V5ω1+6ψ → (5, 6) | V6ω1 → (6, 0) | V7ω1−6ψ → (7, -6) | V7ω1+6ψ → (7, 6) | V8ω1 → (8, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1 | ω1 −ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 3ω1 ω1 −ω1 −3ω1 | 3ω1 ω1 −ω1 −3ω1 | 4ω1 2ω1 0 −2ω1 −4ω1 | 4ω1 2ω1 0 −2ω1 −4ω1 | 4ω1 2ω1 0 −2ω1 −4ω1 | 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 | 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 7ω1 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 −7ω1 | 7ω1 5ω1 3ω1 ω1 −ω1 −3ω1 −5ω1 −7ω1 | 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1−6ψ −ω1−6ψ | ω1+6ψ −ω1+6ψ | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 3ω1−6ψ ω1−6ψ −ω1−6ψ −3ω1−6ψ | 3ω1+6ψ ω1+6ψ −ω1+6ψ −3ω1+6ψ | 4ω1−12ψ 2ω1−12ψ −12ψ −2ω1−12ψ −4ω1−12ψ | 4ω1 2ω1 0 −2ω1 −4ω1 | 4ω1+12ψ 2ω1+12ψ 12ψ −2ω1+12ψ −4ω1+12ψ | 5ω1−6ψ 3ω1−6ψ ω1−6ψ −ω1−6ψ −3ω1−6ψ −5ω1−6ψ | 5ω1+6ψ 3ω1+6ψ ω1+6ψ −ω1+6ψ −3ω1+6ψ −5ω1+6ψ | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 7ω1−6ψ 5ω1−6ψ 3ω1−6ψ ω1−6ψ −ω1−6ψ −3ω1−6ψ −5ω1−6ψ −7ω1−6ψ | 7ω1+6ψ 5ω1+6ψ 3ω1+6ψ ω1+6ψ −ω1+6ψ −3ω1+6ψ −5ω1+6ψ −7ω1+6ψ | 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1−6ψ⊕M−ω1−6ψ | Mω1+6ψ⊕M−ω1+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ | M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ | M4ω1−12ψ⊕M2ω1−12ψ⊕M−12ψ⊕M−2ω1−12ψ⊕M−4ω1−12ψ | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M4ω1+12ψ⊕M2ω1+12ψ⊕M12ψ⊕M−2ω1+12ψ⊕M−4ω1+12ψ | M5ω1−6ψ⊕M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ⊕M−5ω1−6ψ | M5ω1+6ψ⊕M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ⊕M−5ω1+6ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M7ω1−6ψ⊕M5ω1−6ψ⊕M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ⊕M−5ω1−6ψ⊕M−7ω1−6ψ | M7ω1+6ψ⊕M5ω1+6ψ⊕M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ⊕M−5ω1+6ψ⊕M−7ω1+6ψ | M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | Mω1−6ψ⊕M−ω1−6ψ | Mω1+6ψ⊕M−ω1+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ | M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ | M4ω1−12ψ⊕M2ω1−12ψ⊕M−12ψ⊕M−2ω1−12ψ⊕M−4ω1−12ψ | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M4ω1+12ψ⊕M2ω1+12ψ⊕M12ψ⊕M−2ω1+12ψ⊕M−4ω1+12ψ | M5ω1−6ψ⊕M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ⊕M−5ω1−6ψ | M5ω1+6ψ⊕M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ⊕M−5ω1+6ψ | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M7ω1−6ψ⊕M5ω1−6ψ⊕M3ω1−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕M−3ω1−6ψ⊕M−5ω1−6ψ⊕M−7ω1−6ψ | M7ω1+6ψ⊕M5ω1+6ψ⊕M3ω1+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕M−3ω1+6ψ⊕M−5ω1+6ψ⊕M−7ω1+6ψ | M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1 |
2\\ |