Processing math: 100%
Subalgebra A211E16
13 out of 119
Computations done by the calculator project.

Subalgebra type: A211 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (2, 0, 1, 3, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: A211: (6, 8, 11, 15, 11, 6): 42
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g7+g13+g14+g15+g16
Positive simple generators: 6g16+g15+4g14+4g13+6g7
Cartan symmetric matrix: (2/21)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (42)
Decomposition of ambient Lie algebra: V8ω12V7ω1V6ω12V5ω13V4ω12V3ω12V2ω12Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+12ψV7ω1+6ψV5ω1+6ψV3ω1+6ψV8ω1Vω1+6ψV6ω1V4ω12V2ω1V7ω16ψV0V5ω16ψV3ω16ψVω16ψV4ω112ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra.h61/2h5+3/2h4+1/2h3+h1g6+1/3g5+1/6g3+2/3g2g102g9+4g8+6g1g15g16+2/3g14+2/3g13+g7g21+2/3g19g23+3/2g18g25g283/2g24+g22g26g31+6g27g30+1/6g29g33+g32g34g35g36
weight0ω1ω12ω12ω13ω13ω14ω14ω14ω15ω15ω16ω17ω17ω18ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω16ψω1+6ψ2ω12ω13ω16ψ3ω1+6ψ4ω112ψ4ω14ω1+12ψ5ω16ψ5ω1+6ψ6ω17ω16ψ7ω1+6ψ8ω1
Isotypic module decomposition over primal subalgebra (total 16 isotypic components).
Isotypical components + highest weightV0 → (0, 0)Vω16ψ → (1, -6)Vω1+6ψ → (1, 6)V2ω1 → (2, 0)V3ω16ψ → (3, -6)V3ω1+6ψ → (3, 6)V4ω112ψ → (4, -12)V4ω1 → (4, 0)V4ω1+12ψ → (4, 12)V5ω16ψ → (5, -6)V5ω1+6ψ → (5, 6)V6ω1 → (6, 0)V7ω16ψ → (7, -6)V7ω1+6ψ → (7, 6)V8ω1 → (8, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h61/2h5+3/2h4+1/2h3+h1
g6+1/3g5+1/6g3+2/3g2
1/6g11/6g8+1/3g91/6g10
g102g9+4g8+6g1
g2+g3+2g5+g6
Semisimple subalgebra component.
g161/6g152/3g142/3g13g7
h6+11/6h5+5/2h4+11/6h3+4/3h2+h1
1/3g7+1/3g13+1/3g14+1/3g15+1/3g16
g15
h5h4h3
2g15
g21+2/3g19
g6+2/3g5+1/3g32/3g2
1/3g11/3g84/3g9+2/3g10
g18+g23
g23+3/2g18
1/2g10g9g83/2g1
1/2g2g32g5+1/2g6
3/2g193/2g21
g25
g11
g4
g12
g26
g283/2g24+g22
1/2g16+g14g13+1/2g7
1/2h61/2h5+1/2h4+1/2h31/2h1
1/2g7+3/2g133/2g14+1/2g16
g22g24+g28
g26
g12
g4
g11
g25
g31+6g27
g21+5g20g19
4g6g5+2g34g2
2g1+3g83g96g10
5g17+4g18+6g23
5g295g30
g30+1/6g29
1/6g231/6g18+5/6g17
1/3g101/6g9+2/3g82/3g1
1/2g2g3+1/2g51/3g6
g19+5/6g202/3g21
5/6g27+5/6g31
g33+g32
g28+g22
g16+g14+g13g7
h6h42h2+h1
2g73g133g14+2g16
5g225g28
5g325g33
g34
g31g27
g212g20g19
3g6g5+2g3+3g2
2g1+3g8+4g9+8g10
5g1710g1815g23
30g295g30
35g35
g35
g30g29
g23+g18+2g17
2g10+g9+3g83g1
3g28g3+4g5+2g6
15g195g2010g21
5g27+30g31
35g34
g36
g33+g32
g282g24g22
3g16g14+g13+3g7
3h6+4h5+3h44h33h1
10g75g13+5g14+10g16
15g2220g2415g28
35g32+35g33
70g36
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1
ω1
ω1
2ω1
0
2ω1
2ω1
0
2ω1
3ω1
ω1
ω1
3ω1
3ω1
ω1
ω1
3ω1
4ω1
2ω1
0
2ω1
4ω1
4ω1
2ω1
0
2ω1
4ω1
4ω1
2ω1
0
2ω1
4ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
7ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
7ω1
7ω1
5ω1
3ω1
ω1
ω1
3ω1
5ω1
7ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω16ψ
ω16ψ
ω1+6ψ
ω1+6ψ
2ω1
0
2ω1
2ω1
0
2ω1
3ω16ψ
ω16ψ
ω16ψ
3ω16ψ
3ω1+6ψ
ω1+6ψ
ω1+6ψ
3ω1+6ψ
4ω112ψ
2ω112ψ
12ψ
2ω112ψ
4ω112ψ
4ω1
2ω1
0
2ω1
4ω1
4ω1+12ψ
2ω1+12ψ
12ψ
2ω1+12ψ
4ω1+12ψ
5ω16ψ
3ω16ψ
ω16ψ
ω16ψ
3ω16ψ
5ω16ψ
5ω1+6ψ
3ω1+6ψ
ω1+6ψ
ω1+6ψ
3ω1+6ψ
5ω1+6ψ
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
7ω16ψ
5ω16ψ
3ω16ψ
ω16ψ
ω16ψ
3ω16ψ
5ω16ψ
7ω16ψ
7ω1+6ψ
5ω1+6ψ
3ω1+6ψ
ω1+6ψ
ω1+6ψ
3ω1+6ψ
5ω1+6ψ
7ω1+6ψ
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω16ψMω16ψMω1+6ψMω1+6ψM2ω1M0M2ω1M2ω1M0M2ω1M3ω16ψMω16ψMω16ψM3ω16ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM4ω112ψM2ω112ψM12ψM2ω112ψM4ω112ψM4ω1M2ω1M0M2ω1M4ω1M4ω1+12ψM2ω1+12ψM12ψM2ω1+12ψM4ω1+12ψM5ω16ψM3ω16ψMω16ψMω16ψM3ω16ψM5ω16ψM5ω1+6ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM5ω1+6ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M7ω16ψM5ω16ψM3ω16ψMω16ψMω16ψM3ω16ψM5ω16ψM7ω16ψM7ω1+6ψM5ω1+6ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM5ω1+6ψM7ω1+6ψM8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1
Isotypic characterM0Mω16ψMω16ψMω1+6ψMω1+6ψM2ω1M0M2ω1M2ω1M0M2ω1M3ω16ψMω16ψMω16ψM3ω16ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM4ω112ψM2ω112ψM12ψM2ω112ψM4ω112ψM4ω1M2ω1M0M2ω1M4ω1M4ω1+12ψM2ω1+12ψM12ψM2ω1+12ψM4ω1+12ψM5ω16ψM3ω16ψMω16ψMω16ψM3ω16ψM5ω16ψM5ω1+6ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM5ω1+6ψM6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M7ω16ψM5ω16ψM3ω16ψMω16ψMω16ψM3ω16ψM5ω16ψM7ω16ψM7ω1+6ψM5ω1+6ψM3ω1+6ψMω1+6ψMω1+6ψM3ω1+6ψM5ω1+6ψM7ω1+6ψM8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1

Semisimple subalgebra: W_{4}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (1250.00, 300.00)
1: (0.00, 1.00): (200.00, 300.83)



Made total 2116053 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
1*2 (unknown) gens:
(
x_{1} g_{-7}+x_{2} g_{-11}+x_{3} g_{-12}+x_{4} g_{-13}+x_{5} g_{-14}+x_{6} g_{-15}+x_{7} g_{-16}, x_{14} g_{16}+x_{13} g_{15}+x_{12} g_{14}+x_{11} g_{13}+x_{10} g_{12}+x_{9} g_{11}+x_{8} g_{7})
h: (6, 8, 11, 15, 11, 6), e = combination of g_{7} g_{11} g_{12} g_{13} g_{14} g_{15} g_{16} , f= combination of g_{-7} g_{-11} g_{-12} g_{-13} g_{-14} g_{-15} g_{-16} Positive weight subsystem: 1 vectors: (1)
Symmetric Cartan default scale: \begin{pmatrix}
2\\
\end{pmatrix}Character ambient Lie algebra: V_{8\omega_{1}}+2V_{7\omega_{1}}+2V_{6\omega_{1}}+4V_{5\omega_{1}}+5V_{4\omega_{1}}+6V_{3\omega_{1}}+7V_{2\omega_{1}}+8V_{\omega_{1}}+8V_{0}+8V_{-\omega_{1}}+7V_{-2\omega_{1}}+6V_{-3\omega_{1}}+5V_{-4\omega_{1}}+4V_{-5\omega_{1}}+2V_{-6\omega_{1}}+2V_{-7\omega_{1}}+V_{-8\omega_{1}}
A necessary system to realize the candidate subalgebra.
x_{3} x_{10} +x_{1} x_{8} -6= 0
x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -11= 0
x_{7} x_{9} -x_{3} x_{8} = 0
x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{2} x_{9} -11= 0
x_{7} x_{14} +x_{2} x_{9} -6= 0
x_{2} x_{14} -x_{1} x_{10} = 0
x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} -15= 0
x_{5} x_{12} +x_{4} x_{11} -8= 0
The above system after transformation.
x_{3} x_{10} +x_{1} x_{8} -6= 0
x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -11= 0
x_{7} x_{9} -x_{3} x_{8} = 0
x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{2} x_{9} -11= 0
x_{7} x_{14} +x_{2} x_{9} -6= 0
x_{2} x_{14} -x_{1} x_{10} = 0
x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} -15= 0
x_{5} x_{12} +x_{4} x_{11} -8= 0
For the calculator:
(DynkinType =A^{21}_1; ElementsCartan =((6, 8, 11, 15, 11, 6)); generators =(x_{1} g_{-7}+x_{2} g_{-11}+x_{3} g_{-12}+x_{4} g_{-13}+x_{5} g_{-14}+x_{6} g_{-15}+x_{7} g_{-16}, x_{14} g_{16}+x_{13} g_{15}+x_{12} g_{14}+x_{11} g_{13}+x_{10} g_{12}+x_{9} g_{11}+x_{8} g_{7}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{3} x_{10} +x_{1} x_{8} -6, x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -11, x_{7} x_{9} -x_{3} x_{8} , x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{2} x_{9} -11, x_{7} x_{14} +x_{2} x_{9} -6, x_{2} x_{14} -x_{1} x_{10} , x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} -15, x_{5} x_{12} +x_{4} x_{11} -8 )