Highest vectors of representations (total 16) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/2h_{5}+3/2h_{4}+1/2h_{3}+h_{1}\) | \(g_{6}+1/3g_{5}+1/6g_{3}+2/3g_{2}\) | \(g_{10}-2g_{9}+4g_{8}+6g_{1}\) | \(g_{15}\) | \(g_{16}+2/3g_{14}+2/3g_{13}+g_{7}\) | \(-g_{21}+2/3g_{19}\) | \(-g_{23}+3/2g_{18}\) | \(g_{25}\) | \(g_{28}-3/2g_{24}+g_{22}\) | \(g_{26}\) | \(-g_{31}+6g_{27}\) | \(-g_{30}+1/6g_{29}\) | \(g_{33}+g_{32}\) | \(g_{34}\) | \(g_{35}\) | \(g_{36}\) |
weight | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}\) | \(5\omega_{1}\) | \(6\omega_{1}\) | \(7\omega_{1}\) | \(7\omega_{1}\) | \(8\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}-6\psi\) | \(3\omega_{1}+6\psi\) | \(4\omega_{1}-12\psi\) | \(4\omega_{1}\) | \(4\omega_{1}+12\psi\) | \(5\omega_{1}-6\psi\) | \(5\omega_{1}+6\psi\) | \(6\omega_{1}\) | \(7\omega_{1}-6\psi\) | \(7\omega_{1}+6\psi\) | \(8\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{\omega_{1}-6\psi} \) → (1, -6) | \(\displaystyle V_{\omega_{1}+6\psi} \) → (1, 6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{3\omega_{1}-6\psi} \) → (3, -6) | \(\displaystyle V_{3\omega_{1}+6\psi} \) → (3, 6) | \(\displaystyle V_{4\omega_{1}-12\psi} \) → (4, -12) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{4\omega_{1}+12\psi} \) → (4, 12) | \(\displaystyle V_{5\omega_{1}-6\psi} \) → (5, -6) | \(\displaystyle V_{5\omega_{1}+6\psi} \) → (5, 6) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{7\omega_{1}-6\psi} \) → (7, -6) | \(\displaystyle V_{7\omega_{1}+6\psi} \) → (7, 6) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(7\omega_{1}\) \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) \(-7\omega_{1}\) | \(7\omega_{1}\) \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) \(-7\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) | \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}-6\psi\) \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) \(-3\omega_{1}-6\psi\) | \(3\omega_{1}+6\psi\) \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) \(-3\omega_{1}+6\psi\) | \(4\omega_{1}-12\psi\) \(2\omega_{1}-12\psi\) \(-12\psi\) \(-2\omega_{1}-12\psi\) \(-4\omega_{1}-12\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+12\psi\) \(2\omega_{1}+12\psi\) \(12\psi\) \(-2\omega_{1}+12\psi\) \(-4\omega_{1}+12\psi\) | \(5\omega_{1}-6\psi\) \(3\omega_{1}-6\psi\) \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) \(-3\omega_{1}-6\psi\) \(-5\omega_{1}-6\psi\) | \(5\omega_{1}+6\psi\) \(3\omega_{1}+6\psi\) \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) \(-3\omega_{1}+6\psi\) \(-5\omega_{1}+6\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(7\omega_{1}-6\psi\) \(5\omega_{1}-6\psi\) \(3\omega_{1}-6\psi\) \(\omega_{1}-6\psi\) \(-\omega_{1}-6\psi\) \(-3\omega_{1}-6\psi\) \(-5\omega_{1}-6\psi\) \(-7\omega_{1}-6\psi\) | \(7\omega_{1}+6\psi\) \(5\omega_{1}+6\psi\) \(3\omega_{1}+6\psi\) \(\omega_{1}+6\psi\) \(-\omega_{1}+6\psi\) \(-3\omega_{1}+6\psi\) \(-5\omega_{1}+6\psi\) \(-7\omega_{1}+6\psi\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi}\) | \(\displaystyle M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi} \oplus M_{-5\omega_{1}-6\psi}\) | \(\displaystyle M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi} \oplus M_{-5\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{7\omega_{1}-6\psi}\oplus M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi} \oplus M_{-3\omega_{1}-6\psi}\oplus M_{-5\omega_{1}-6\psi}\oplus M_{-7\omega_{1}-6\psi}\) | \(\displaystyle M_{7\omega_{1}+6\psi}\oplus M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi} \oplus M_{-3\omega_{1}+6\psi}\oplus M_{-5\omega_{1}+6\psi}\oplus M_{-7\omega_{1}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\) | \(\displaystyle M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi}\) | \(\displaystyle M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi}\oplus M_{-3\omega_{1}-6\psi} \oplus M_{-5\omega_{1}-6\psi}\) | \(\displaystyle M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi}\oplus M_{-3\omega_{1}+6\psi} \oplus M_{-5\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{7\omega_{1}-6\psi}\oplus M_{5\omega_{1}-6\psi}\oplus M_{3\omega_{1}-6\psi}\oplus M_{\omega_{1}-6\psi}\oplus M_{-\omega_{1}-6\psi} \oplus M_{-3\omega_{1}-6\psi}\oplus M_{-5\omega_{1}-6\psi}\oplus M_{-7\omega_{1}-6\psi}\) | \(\displaystyle M_{7\omega_{1}+6\psi}\oplus M_{5\omega_{1}+6\psi}\oplus M_{3\omega_{1}+6\psi}\oplus M_{\omega_{1}+6\psi}\oplus M_{-\omega_{1}+6\psi} \oplus M_{-3\omega_{1}+6\psi}\oplus M_{-5\omega_{1}+6\psi}\oplus M_{-7\omega_{1}+6\psi}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) |
2\\ |